Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Syst Appl Microbiol ; 47(2-3): 126497, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38402653

RESUMEN

The Pectobacteriaceae family comprises plant pathogens able to provoke diverse diseases, including plant maceration due to the production of pectinases disrupting the plant cell wall. To better understand their diversity, a survey of pectinolytic bacteria was performed in brackish lakes of the French region La Camargue near the Mediterranean Sea. The genome of six atypical isolates was sequenced; their size is around 4.8 to 5.0 Mb, including a plasmid of 59 to 61 kb; their G+C values range from 49.1 to 49.3 mol%. Phylogenetic analyses indicated that the novel strains form a new clade of Pectobacteriaceae that branches at the basis of the group encompassing the genera Lonsdalea, Musicola, and Dickeya. Based on phenotypic, genomic and phylogenetic characteristics, we propose the creation of a new genus with the name Prodigiosinella gen. nov. Both the phenotypic and phylogenetic analyses separated the strains into two distinct subgroups, G1 and G2. The type strain LS101T (CFBP 8826T = LMG 32072T) and strain CE70 (CFBP 9054 = LMG 32867) are representative G1 and G2 members, respectively. Three genomic methods were used to analyze DNA-DNA relatedness: digital DNA-DNA hybridization (isDDH), average nucleotide identity (ANI), and genome alignment fraction (AF). They revealed a close relationship between genomes of the two groups, supporting their appurtenance to a same species for which we propose the name Prodigiosinella aquatilis sp. nov. Four strains previously designated as Serratia sp. (ATCC 39006), Brenneria "ulupoensis" (K61) or Erwinia sp. (MK01 and MK09) belong to the new genus Prodigiosinella.

2.
Nucleic Acids Res ; 50(16): 9149-9161, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35950487

RESUMEN

DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.


Asunto(s)
Girasa de ADN , ADN-Topoisomerasas de Tipo I , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Antibacterianos/farmacología
3.
Nucleic Acids Res ; 50(13): 7287-7297, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776118

RESUMEN

DNA supercoiling acts as a global transcriptional regulator in bacteria, but the promoter sequence or structural determinants controlling its effect remain unclear. It was previously proposed to modulate the torsional angle between the -10 and -35 hexamers, and thereby regulate the formation of the closed-complex depending on the length of the 'spacer' between them. Here, we develop a thermodynamic model of this notion based on DNA elasticity, providing quantitative and parameter-free predictions of the relative activation of promoters containing a short versus long spacer when the DNA supercoiling level is varied. The model is tested through an analysis of in vitro and in vivo expression assays of mutant promoters with variable spacer lengths, confirming its accuracy for spacers ranging from 15 to 19 nucleotides, except those of 16 nucleotides where other regulatory mechanisms likely overcome the effect of this specific step. An analysis at the whole-genome scale in Escherichia coli then demonstrates a significant effect of the spacer length on the genomic expression after transient or inheritable superhelical variations, validating the model's predictions. Altogether, this study shows an example of mechanical constraints associated to promoter binding by RNA Polymerase underpinning a basal and global regulatory mechanism.


Asunto(s)
ADN Bacteriano , ADN Superhelicoidal , Regiones Promotoras Genéticas , Transcripción Genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos
4.
Plant Commun ; 3(2): 100272, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35529946

RESUMEN

Carbon catabolite repression (CCR) plays a key role in many physiological and adaptive responses in a broad range of microorganisms that are commonly associated with eukaryotic hosts. When a mixture of different carbon sources is available, CCR, a global regulatory mechanism, inhibits the expression and activity of cellular processes associated with utilization of secondary carbon sources in the presence of the preferred carbon source. CCR is known to be executed by completely different mechanisms in different bacteria, yeast, and fungi. In addition to regulating catabolic genes, CCR also appears to play a key role in the expression of genes involved in plant-microbe interactions. Here, we present a detailed overview of CCR mechanisms in various bacteria. We highlight the role of CCR in beneficial as well as deleterious plant-microbe interactions based on the available literature. In addition, we explore the global distribution of known regulatory mechanisms within bacterial genomes retrieved from public repositories and within metatranscriptomes obtained from different plant rhizospheres. By integrating the available literature and performing targeted meta-analyses, we argue that CCR-regulated substrate use preferences of microorganisms should be considered an important trait involved in prevailing plant-microbe interactions.


Asunto(s)
Represión Catabólica , Bacterias/metabolismo , Carbono/metabolismo , Represión Catabólica/genética , Hongos/metabolismo
5.
mBio ; 13(3): e0052422, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35491820

RESUMEN

Dickeya dadantii is a phytopathogenic bacterium that causes soft rot in a wide range of plant hosts worldwide and a model organism for studying virulence gene regulation. The present study provides a comprehensive and annotated transcriptomic map of D. dadantii obtained by a computational method combining five independent transcriptomic data sets: (i) paired-end RNA sequencing (RNA-seq) data for a precise reconstruction of the RNA landscape; (ii) DNA microarray data providing transcriptional responses to a broad variety of environmental conditions; (iii) long-read Nanopore native RNA-seq data for isoform-level transcriptome validation and determination of transcription termination sites; (iv) differential RNA sequencing (dRNA-seq) data for the precise mapping of transcription start sites; (v) in planta DNA microarray data for a comparison of gene expression profiles between in vitro experiments and the early stages of plant infection. Our results show that transcription units sometimes coincide with predicted operons but are generally longer, most of them comprising internal promoters and terminators that generate alternative transcripts of variable gene composition. We characterize the occurrence of transcriptional read-through at terminators, which might play a basal regulation role and explain the extent of transcription beyond the scale of operons. We finally highlight the presence of noncontiguous operons and excludons in the D. dadantii genome, novel genomic arrangements that might contribute to the basal coordination of transcription. The highlighted transcriptional organization may allow D. dadantii to finely adjust its gene expression program for a rapid adaptation to fast-changing environments. IMPORTANCE This is the first transcriptomic map of a Dickeya species. It may therefore significantly contribute to further progress in the field of phytopathogenicity. It is also one of the first reported applications of long-read Nanopore native RNA-seq in prokaryotes. Our findings yield insights into basal rules of coordination of transcription that might be valid for other bacteria and may raise interest in the field of microbiology in general. In particular, we demonstrate that gene expression is coordinated at the scale of transcription units rather than operons, which are larger functional genomic units capable of generating transcripts with variable gene composition for a fine-tuning of gene expression in response to environmental changes. In line with recent studies, our findings indicate that the canonical operon model is insufficient to explain the complexity of bacterial transcriptomes.


Asunto(s)
Enterobacteriaceae , Regulación Bacteriana de la Expresión Génica , Bacterias , Dickeya , Enterobacteriaceae/metabolismo
6.
Microorganisms ; 10(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630292

RESUMEN

Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.

7.
Environ Microbiol ; 24(3): 1467-1483, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35014170

RESUMEN

The Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods. However, we report here a strain-specific polymorphism in the biosynthesis genes vfmO and vfmP, which is predicted to be related to the production of different analogues of the QS signal. Consequently, the Vfm communication could be impossible between strains possessing different variants of the genes vfmO/P. We constructed three Vfm QS biosensor strains possessing different vfmO/P variants and compared these biosensors for their responses to samples prepared from 34 Dickeya strains possessing different vfmO/P variants. A pattern of specificity was demonstrated, providing evidence that the polymorphism in the genes vfmO/P determines the biosynthesis of different analogues of the QS signal. Unexpectedly, this vfmO/P-dependent pattern of specificity is linked to a polymorphism in the ABC transporter gene vfmG, suggesting an adaptation of the putative permease VfmG to specifically bind different analogues of the QS signal. Accordingly, we discuss the possible involvement of VfmG as co-sensor of the Vfm two-component regulatory system.


Asunto(s)
Proteínas Bacterianas , Percepción de Quorum , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dickeya , Regulación Bacteriana de la Expresión Génica , Polimorfismo Genético , Percepción de Quorum/genética
8.
J Biol Chem ; 298(1): 101446, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826421

RESUMEN

The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.


Asunto(s)
Represión Catabólica , Dickeya , Pectinas , Proteínas Bacterianas/metabolismo , Dickeya/metabolismo , Digestión , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica , Pectinas/metabolismo , Polisacárido Liasas/química
9.
Sci Rep ; 11(1): 21106, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702889

RESUMEN

RecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinogenic activity and their ability to induce the SOS response, to better understand the structure-function relationship of RecA and the effect of combined mutations. We also investigated the biochemical properties of RecA variants that may be useful for the development of biotechnological applications. We showed that Dickeya dadantii RecA (DdRecA) had an optimum strand exchange activity at 30 °C and in the presence of a dNTP mixture that inhibited Escherichia coli RecA (EcRecA). The differences between the CTD and C-tail of the EcRecA and DdRecA domains could explain the altered behaviour of DdRecA. D. radiodurans RecA (DrRecA) was unable to perform recombination and activation of the SOS response in an E. coli context, probably due to its inability to interact with E. coli recombination accessory proteins and SOS LexA repressor. DrRecA strand exchange activity was totally inhibited in the presence of chloride ions but worked well in acetate buffer. The overproduction of Pseudomonas aeruginosa RecA (PaRecA) in an E. coli context was responsible for a higher SOS response and defects in cellular growth. PaRecA was less inhibited by the dNTP mixture than EcRecA. Finally, the study of three variants, namely, EcPa, EcRecAV1 and EcRecAV2, that contained a combination of mutations that, taken independently, are described as improving recombination, led us to raise new hypotheses on the structure-function relationship and on the monomer-monomer interactions that perturb the activity of the protein as a whole.


Asunto(s)
Proteínas de Unión al ADN/química , Deinococcus/enzimología , Dickeya/enzimología , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Pseudomonas aeruginosa/enzimología , Rec A Recombinasas/química , Proteínas de Unión al ADN/genética , Deinococcus/genética , Dickeya/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pseudomonas aeruginosa/genética , Rec A Recombinasas/genética , Especificidad de la Especie
10.
mSystems ; 6(4): e0097821, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427530

RESUMEN

DNA supercoiling acts as a global transcriptional regulator that contributes to the rapid transcriptional response of bacteria to many environmental changes. Although a large fraction of promoters from phylogenetically distant species respond to superhelical variations, the sequence or structural determinants of this behavior remain elusive. Here, we focus on the sequence of the "discriminator" element that was shown to modulate this response in several promoters. We develop a quantitative thermodynamic model of this regulatory effect, focusing on open complex formation during transcription initiation independently from promoter-specific regulatory proteins. We analyze previous and new expression data and show that the model predictions quantitatively match the in vitro and in vivo supercoiling response of selected promoters with mutated discriminator sequences. We then test the universality of this mechanism by a statistical analysis of promoter sequences from transcriptomes of phylogenetically distant bacteria under conditions of supercoiling variations (i) by gyrase inhibitors, (ii) by environmental stresses, or (iii) inherited in the longest-running evolution experiment. In all cases, we identify a robust and significant sequence signature in the discriminator region, suggesting that supercoiling-modulated promoter opening underpins a ubiquitous regulatory mechanism in the prokaryotic kingdom based on the fundamental mechanical properties of DNA and its basal interaction with RNA polymerase. IMPORTANCE In this study, we highlight the role of the discriminator as a global sensor of supercoiling variations and propose the first quantitative regulatory model of this principle, based on the specific step of promoter opening during transcription initiation. It defines the predictive rule by which DNA supercoiling quantitatively modulates the expression rate of bacterial promoters, depending on the G/C content of their discriminator and independently from promoter-specific regulatory proteins. This basal mechanism affects a wide range of species, which is tested by an extensive analysis of global high-throughput expression data. Altogether, ours results confirm and provide a quantitative framework for the long-proposed notion that the discriminator sequence is a significant determinant of promoter supercoiling sensitivity, underpinning the ubiquitous regulatory action of DNA supercoiling on the core transcriptional machinery, in particular in response to quick environmental changes.

11.
Front Microbiol ; 12: 687484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248909

RESUMEN

Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investigated the involvement of the RNA chaperones Hfq and ProQ in the production of the main D. dadantii virulence functions. Phenotypic assays on the hfq and proQ mutants showed that inactivation of hfq resulted in a growth defect, a modified capacity for biofilm formation and strongly reduced motility, and in the production of degradative extracellular enzymes (proteases, cellulase, and pectate lyases). Accordingly, the hfq mutant failed to cause soft rot on chicory leaves. The proQ mutant had reduced resistance to osmotic stress, reduced extracellular pectate lyase activity compared to the wild-type strain, and reduced virulence on chicory leaves. Most of the phenotypes of the hfq and proQ mutants were related to the low amounts of mRNA of the corresponding virulence factors. Complementation of the double mutant hfq-proQ by each individual protein and cross-complementation of each chaperone suggested that they might exert their effects via partially overlapping but different sets of targets. Overall, it clearly appeared that the two Hfq and ProQ RNA chaperones are important regulators of pathogenicity in D. dadantii. This underscores that virulence genes are regulated post-transcriptionally by non-coding RNAs.

12.
Microorganisms ; 9(2)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498890

RESUMEN

Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.

13.
Nucleic Acids Res ; 49(2): 776-790, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33337488

RESUMEN

Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαß heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.


Asunto(s)
Proteínas Bacterianas/fisiología , Dickeya/patogenicidad , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/fisiología , Proteínas Bacterianas/genética , Sitios de Unión , Celulasa/biosíntesis , Celulasa/genética , Cichorium intybus/microbiología , ADN Bacteriano/metabolismo , ADN Superhelicoidal/metabolismo , Dickeya/genética , Dickeya/fisiología , Dimerización , Estudios de Asociación Genética , Factores de Integración del Huésped/química , Factores de Integración del Huésped/genética , Movimiento (Física) , Péptido Hidrolasas/biosíntesis , Péptido Hidrolasas/genética , Plásmidos , Poligalacturonasa/biosíntesis , Poligalacturonasa/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Sideróforos/biosíntesis , Sideróforos/genética , Transcripción Genética/genética , Transcriptoma , Virulencia/genética
14.
Anal Biochem ; 619: 114061, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33285123

RESUMEN

A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added products. HPLC is performed, after derivatization of the 2-oxo-acid groups of the metabolite with o-phenylenediamine (oPD), using a linear gradient of trifluoroacetic acid and acetonitrile. Quantification is accomplished with an internal standard method. The gradient is optimized to distinguish KDG from its close structural analogues such as 5-keto-4-deoxyuronate (DKI) and 2,5-diketo-3-deoxygluconate (DKII). The proposed method is simple, highly sensitive and accurate for time course analysis of pectin or alginate degradation.


Asunto(s)
Alginatos/metabolismo , Dickeya/metabolismo , Gluconatos , Pectinas/metabolismo , Gluconatos/química , Gluconatos/aislamiento & purificación , Gluconatos/metabolismo
15.
Mol Ecol ; 30(2): 608-624, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33226678

RESUMEN

Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.


Asunto(s)
Dickeya/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum tuberosum , Ecosistema , Europa (Continente) , Francia , Solanum tuberosum/microbiología
16.
Int J Syst Evol Microbiol ; 70(8): 4508-4514, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32628105

RESUMEN

The genus Dickeya is an important group of plant pathogens that currently comprises 10 recognized species. Although most Dickeya isolates originated from infected cultivated plants, they are also isolated from water. The genomic sequence of the Australian strain NCPPB 569T clearly established its separation from the previously characterized Dickeya species. The average nucleotide identity and digital DNA-DNA hybridization values obtained by comparing strain NCPPB 569T with strains of characterized Dickeya species were lower than 87 and 32 %, respectively, supporting the delineation of a new species. The name Dickeya poaceiphila sp. nov. is proposed for this taxon with the type strain NCPPB 569T (=CFBP 8731T). Two other strains isolated in Australia, CFBP 1537 and CFBP 2040, also belong to this species. Phenotypic and genomic comparisons enabled the identification of traits distinguishing D. poaceiphila isolates from strains of other Dickeya species.


Asunto(s)
Enterobacteriaceae/clasificación , Filogenia , Saccharum/microbiología , Australia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Enterobacteriaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
J Food Sci Technol ; 57(5): 1904-1916, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32327801

RESUMEN

In this study, we investigated the diversity of AAB from fermenting cocoa and the production of acetic acid in response to various environmental conditions. Ribosomal 16S gene sequence analysis and PCR-RFLP showed a restricted microbiota mainly composed of Acetobacter pasteurianus, Acetobacter tropicalis and Acetobacter okinawensis sp., consistently found in all six regions studied. Meanwhile Acetobacter malorum, Acetobacter ghanensis and Gluconobacter oxydans were isolated as minor species in specific regions. The dominant species were mainly isolated in the first 72 h period of natural cocoa fermentation while the minor species were present toward the later stages. Acetobacter okinawensis, a newly isolated species, was able to yield an unusually high quantity, up to 62 g/L of acetic acid at 30 °C. However, a shift of temperature to 35 °C severely impaired acid production in most strains of this species. While acetic acid production increases for up to 6 days in Acetobacter okinawensis and Acetobacter pasteurianus, it decreases beyond 4 days in Acetobacter tropicalis strains. The production of acetic acid was strongly dependent on environmental conditions, with optimal production between pH 4 and 5, under ethanol concentration below 8% and temperatures above 35-40 °C, corresponding to conditions prevailing in the first half of fermentation process. Acetobacter tropicalis was more productive at higher ethanol concentration and Acetobacter okinawensis at low pH. Species diversity and different behavior of strains highlight the importance of valuable starter selection for well-controlled cocoa fermentation.

18.
Microorganisms ; 7(12)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847191

RESUMEN

Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.

19.
Biochem Soc Trans ; 47(5): 1511-1531, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31654073

RESUMEN

Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and stretched into a Watson-Crick base-paired triplet conformation. The RecA nucleoprotein filament also contains ATP and Mg2+, two cofactors required for RecA activity. Then, the complex starts a homology search by interacting with and stretching dsDNA. Thanks to supercoiling, intersegment sampling and RecA clustering, a genome-wide homology search takes place at a relevant metabolic timescale. When a region of homology 8-20 base pairs in length is found and stabilized, DNA strand exchange proceeds, forming a heteroduplex complex that is resolved through a combination of DNA synthesis, ligation and resolution. RecA activities can take place without ATP hydrolysis, but this latter activity is necessary to improve and accelerate the process. Protein flexibility and monomer-monomer interactions are fundamental for RecA activity, which functions cooperatively. A structure/function relationship analysis suggests that the recombinogenic activity can be improved and that recombinases have an inherently large recombination potential. Understanding this relationship is essential for designing RecA derivatives with enhanced activity for biotechnology applications. For example, this protein is a major actor in the recombinase polymerase isothermal amplification (RPA) used in point-of-care diagnostics.


Asunto(s)
ADN Bacteriano/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Rec A Recombinasas/genética , Recombinación Genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Conformación Proteica , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo
20.
Comput Struct Biotechnol J ; 17: 1047-1055, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452857

RESUMEN

DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...